algorithm policy

英 [ˈælɡərɪðəm ˈpɒləsi] 美 [ˈælɡərɪðəm ˈpɑːləsi]

【计】算法策略

计算机



双语例句

  1. His work as a historian brought him into conflict with the political establishment
    他是一位历史学家,工作的缘故使他处在了和政界的当权者对立的位置上。
  2. Choose the rule-combining algorithm for the policy.
    选择策略的规则组合算法。
  3. Only one rule-combining algorithm is applicable per policy.
    每个策略只能使用一种规则组合算法。
  4. Integrated with goal refinement method and entity refinement method, an algorithm of policy refinement is proposed in this paper on the basis of layered-policy model for security policy.
    本文基于安全策略的分层管理模型,提出了一个集目标求精和实体求精为一体的安全策略逐级求精算法。
  5. The Algorithm and Policy for License Scheduling under the Campus Grid Environment
    校园网格环境下软件License调度算法及策略研究
  6. Reinforcement Learning Algorithm for Dynamic Policy Under Mixed Multi-agent Domains
    混合多Agent环境下动态策略强化学习算法
  7. The Realization and Analysis of Kruskal's Algorithm Based on Greedy Policy
    基于贪婪策略的克鲁斯卡尔算法的实现与分析
  8. It describes in structure and principle of ABWC and discusses transparency, consistency, replacement algorithm, prefetching policy and other main problems which need to be solved in cache designing.
    描述该框架的组成结构与工作原理,对缓存设计时需要解决的透明性、一致性、替换算法和预取策略等主要问题进行讨论并给出性能测试和分析。
  9. Then, the paper discusses the realization of the speech's sampling module, playback module, communication module, compression and decompression module in detail, and gives a self-adaptive silence detection algorithm and a policy to make disorder data package in order.
    文章详细地讨论了语音网络通讯的采集模块、回放模块、通信模块和压缩解压模块的具体实现,并提出了一种自适应的静音检测算法和数据包乱序调整的策略。
  10. A Web Spider's Searching Algorithm Based on Non-Greedy Policy
    一种基于非贪婪策略的网络蜘蛛搜索算法
  11. Based on the analysis of the RIO and A-RED, an active queue management algorithm with adaptive control policy named A-RIO was proposed in this paper.
    基于对RIO、A-RED算法的分析研究,提出一种自适应调整控制策略的RIO算法(A-RIO)。
  12. Research and Implementation of the Algorithm for Domain Policy Making
    基于域策略形成算法的研究与实现
  13. The learning of this method is divided into two processes, state space learning using K-means clustering algorithm for adaptive discretization of continuous states and policy learning using Sarsa algorithm for finding optimal policy.
    该方法的学习过程分为两部分:对连续状态空间进行自适应离散化的状态空间学习,使用K-均值聚类算法;寻找最优策略的策略学习,使用替代合适迹Sarsa学习算法。
  14. For OBS technology, we presented a new scheduling policy containing both certain switching node architecture and scheduling algorithm. This scheduling policy can reduce packet loss rate in an OBS network.
    在光突发领域,本文提出了一种包含一定的波长调度算法和交换节点结构的调度策略用于改进现有的OBS网络丢包率。
  15. This model includes architecture for risk-based trust management, method to compute trust value of end certificate and the algorithm, and policy to trust a certificate.
    模型包括基于风险的信任管理体系结构,终端证书的信任值计算方法及其实现算法,以及证书信任策略。
  16. The policy based on the expense is implemented by using the multi-branches tree search algorithm, and non-routing policy through has been implemented by self-definition detection attack algorithm.
    基于费用的策略采用高性能的多分支树查找算法实现,无路由策略通过自定义的检测攻击算法实现。
  17. For the product failures of the refrigeratory, research the algorithm of product policy decision tree and clustering analysis, resulting in a satisfactory failure information report for manufacture departments.
    针对冰箱产品故障信息的缺陷,通过聚类分析,并按决策树算法对产品故障进行研究,得出令生产部门满意故障信息报表。
  18. Based on the analysis and prediction of events and system parameters of various server nodes with time-series model algorithm and event classification matching algorithm, combined with policy database technology, an autonomic computing model of server system management was established.
    利用时序模型算法和事件分类匹配算法对服务器系统多个节点的事件和系统参数进行分析与预测,结合策略库技术,构建了一个服务器系统管理的自律计算模型。
  19. Study of load balance scheduling algorithm and placement policy for VoD systems
    VoD系统的负载均衡存储策略及调度算法研究
  20. Markov Decision Process ( MDP) model is the general frame for solving reinforcement learning problems. The Dynamic Programming ( DP) method is the Agent learning value functions algorithm relating with policy in Markov Decision Processes Environment.
    Markov决策过程(MDP)模型是解决激励学习问题的通用方法,而动态规划方法是Agent在具有Markov环境下与策略相关的值函数学习算法。
  21. As a result, both of the validity and the performance of algorithm are validated via the simulation studies, and compare its performance with genetic algorithm scheduling policy.
    通过仿真试验对算法的有效性和性能进行了验证,并比较了与遗传算法调度方案之间的性能差异。
  22. The algorithm incorporates cache consistency policy with cache replacement policy in which the cache consistency policy is adaptive TTL mechanism, while the cache replacement policy is based on a cost/ value model.
    这种算法包括一致性策略和替换策略两部分,一致性策略采用自适应TTL机制,替换策略是基于成本/价值模型的算法。
  23. The Optimal Model and Its Solution Algorithm for Ordering Policy under Just-In-Time Condition
    及时条件下订货策略的优化模型及求解算法
  24. An algorithm to optimize policy in call admission control is presented by using the method of Markov decision processes combined with performance potentials.
    应用Markov决策过程与性能势相结合的方法,给出了呼叫接入控制的策略优化算法。
  25. Then by utilizing the features of this model an online optimization algorithm that combines policy gradient estimation and stochastic approximation is derived.
    利用此模型的动态结构特性,结合在线学习估计梯度与随机逼近改进策略,提出动态电源管理策略的在线优化算法。
  26. Based on rules inference, an algorithm for security policy conflict detection is proposed.
    提出了基于规则推理的安全策略冲突检测算法。
  27. This algorithm comprises policy resolution algorithm within coalition partner, coalition dynamic partition heuristic algorithm aiming at policy goals, policy resolution algorithm among coalition partners, and logical verification method for policy rules.
    该方法由协作者内部策略解析算法、基于策略目标的协作体动态划分启发算法、协作者之间策略解析算法以及规则的逻辑验证方法等组成。
  28. Consistent hash algorithm and redundancy policy are presented in system storage expansion.
    系统存储扩展方面,提出了使用一致性哈希算法和冗余方式改进存储扩展。
  29. Under multiple constraints QoS model, this model improves routing optimization ability of ant colony algorithm by optimizing routing policy of ant colony algorithm and through introduction of the mutation operator of genetic algorithm to the model.
    该模型是在多约束QoS模型下,通过优化蚁群算法的路由策略和引入遗传算法的变异算子来提高蚁群算法的路由寻优能力。
  30. Search algorithm using dynamic policy process and return policies, which further reduces the number of queries and traffic data reader.
    算法的搜索过程使用动态策略和返回策略,这些策略进一步减少了阅读器的查询次数和通信数据量。